Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Mol Cancer ; 22(1): 152, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689715

RESUMO

BACKGROUND: Among digestive tract tumours, pancreatic ductal adenocarcinoma (PDAC) shows the highest mortality trend. Moreover, although PDAC metastasis remains a leading cause of cancer-related deaths, the biological mechanism is poorly understood. Recent evidence demonstrates that circular RNAs (circRNAs) play important roles in PDAC progression. METHODS: Differentially expressed circRNAs in normal and PDAC tissues were screened via bioinformatics analysis. Sanger sequencing, RNase R and actinomycin D assays were performed to confirm the loop structure of circEIF3I. In vitro and in vivo functional experiments were conducted to assess the role of circEIF3I in PDAC. MS2-tagged RNA affinity purification, mass spectrometry, RNA immunoprecipitation, RNA pull-down assay, fluorescence in situ hybridization, immunofluorescence and RNA-protein interaction simulation and analysis were performed to identify circEIF3I-interacting proteins. The effects of circEIF3I on the interactions of SMAD3 with TGFßRI or AP2A1 were measured through co-immunoprecipitation and western blotting. RESULTS: A microarray data analysis showed that circEIF3I was highly expressed in PDAC cells and correlated with TNM stage and poor prognosis. Functional experiments in vitro and in vivo revealed that circEIF3I accelerated PDAC cells migration, invasion and metastasis by increasing MMPs expression and activity. Mechanistic research indicated that circEIF3I binds to the MH2 domain of SMAD3 and increases SMAD3 phosphorylation by strengthening the interactions between SMAD3 and TGFßRI on early endosomes. Moreover, AP2A1 binds with circEIF3I directly and promotes circEIF3I-bound SMAD3 recruitment to TGFßRI on early endosomes. Finally, we found that circEif3i exerts biological functions in mice similar to those of circEIF3I in humans PDAC. CONCLUSIONS: Our study reveals that circEIF3I promotes pancreatic cancer progression. circEIF3I is a molecular scaffold that interacts with SMAD3 and AP2A1 to form a ternary complex, that facilitates the recruitment of SMAD3 to early endosomes and then activates the TGF-ß signalling pathway. Hence, circEIF3I is a potential prognostic biomarker and therapeutic target in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/genética , Endossomos , Hibridização in Situ Fluorescente , Neoplasias Pancreáticas/genética , RNA Circular , Proteína Smad3/genética , Fator de Crescimento Transformador beta , Neoplasias Pancreáticas
2.
Front Mol Biosci ; 9: 957001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438659

RESUMO

Prefoldins (PFDNs), a group of proteins known to be associated with cytoskeletal rearrangement, are involved in tumor progression in various cancer types. However, little is known about the roles of PFDNs in hepatocellular carcinoma (HCC). Herein, we investigated the transcriptional and survival data of PFDNs from The Cancer Genome Atlas (TCGA) database. Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA), and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the potential functions of PFDN1/2/3/4. We also detected the expression of PFDN1/2/3/4 via immunohistochemistry (IHC), Western blotting, and real-time PCR in our clinical samples. We found that the PFDN family showed elevated expression in HCC tissues, while only PFDN1/2/3/4 were found to be significantly correlated with poor prognosis of patients with HCC in the TCGA database. Further investigation was associated with PFDN1-4. We found that the expression of PFDN1/2/3/4 was significantly associated with advanced clinicopathologic features. Apart from the TCGA database, IHC, real-time PCR, and immunoblotting identified the overexpression of PFDN1/2/3/4 in HCC tissues and HCC cell lines. Taken together, these results indicated that PFDN1/2/3/4 might be novel prognostic biomarkers and treatment targets for patients with HCC.

3.
Redox Biol ; 57: 102498, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36242914

RESUMO

LncRNAs are involved in the pathophysiologic processes of multiple diseases, but little is known about their functions in hepatic ischemia/reperfusion injury (HIRI). As a novel lncRNA, the pathogenetic significance of hepatic nuclear factor 4 alpha, opposite strand (Hnf4αos) in hepatic I/R injury remains unclear. Here, differentially expressed Hnf4αos and Hnf4α antisense RNA 1 (Hnf4α-as1) were identified in liver tissues from mouse ischemia/reperfusion models and patients who underwent liver resection surgery. Hnf4αos deficiency in Hnf4αos-KO mice led to improved liver function, alleviated the inflammatory response and reduced cell death. Mechanistically, we found a regulatory role of Hnf4αos-KO in ROS metabolism through PGC1α upregulation. Hnf4αos also promoted the stability of Hnf4α mRNA through an RNA/RNA duplex, leading to the transcriptional activation of miR-23a and miR-23a depletion was required for PGC1α function in hepatoprotective effects on HIRI. Together, our findings reveal that Hnf4αos elevation in HIRI leads to severe liver damage via Hnf4αos/Hnf4α/miR-23a axis-mediated PGC1α inhibition.

4.
Front Immunol ; 13: 892750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812416

RESUMO

Background: Complement factor H-related 4 (CFHR4) is a protein-coding gene that plays an essential role in multiple diseases. However, the prognostic value of CFHR4 in hepatocellular carcinoma (HCC) is unknown. Methods: Using multiple databases, we investigated CFHR4 expression levels in HCC and multiple cancers. The relationship between CFHR4 expression levels and clinicopathological variables was further analyzed. Various potential biological functions and regulatory pathways of CFHR4 in HCC were identified by performing a Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA). Single-sample gene set enrichment analysis (ssGSEA) was performed to confirm the correlation between CFHR4 expression and immune cell infiltration. The correlations between CFHR4 expression levels in HCC and N6-methyladenosine (m6A) modifications and the competing endogenous RNA (ceRNA) regulatory networks were confirmed in TCGA cohort. Results: CFHR4 expression levels were significantly decreased in HCC tissues. Low CFHR4 expression in HCC tissues was significantly correlated with the patients' sex, race, age, TNM stage, pathological stage, tumor status, residual tumor, histologic grade and alpha fetal protein (AFP) level. GO and KEGG analyses revealed that differentially expressed genes related to CFHR4 may be involved in the synaptic membrane, transmembrane transporter complex, gated channel activity, chemical carcinogenesis, retinol metabolism, calcium signaling pathway, PPAR signaling pathway, insulin and gastric acid secretion. GSEA revealed that the FCGR-activated reaction, PLK1 pathway, ATR pathway, MCM pathway, cascade reactions of PI3K and FGFR1, reactant-mediated MAPK activation and FOXM1 pathway were significantly enriched in HCC with low CFHR4 expression. Moreover, CFHR4 expression was inversely correlated the levels of infiltrating Th2 cells, NK CD56bright cells and Tfh cells. In contrast, we observed positive correlations with the levels of infiltrating DCs, neutrophils, Th17 cells and mast cells. CFHR4 expression showed a strong correlation with various immunomarker groups in HCC. In addition, high CFHR4 expression significantly prolonged the overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI). We observed a substantial correlation between the expression of CFHR4 and multiple N6-methyladenosine genes in HCC and constructed potential CFHR4-related ceRNA regulatory networks. Conclusions: CFHR4 might be a potential therapeutic target for improving the HCC prognosis and is closely related to immune cell infiltration.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adenosina/análogos & derivados , Apolipoproteínas , Biomarcadores , Carcinoma Hepatocelular/genética , Feminino , Humanos , Neoplasias Hepáticas/genética , Masculino
5.
Oncogenesis ; 11(1): 39, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851575

RESUMO

Nicotinamide N-methyltransferase (NNMT), a member of the N-methyltransferase family, plays an important role in tumorigenesis. However, its expression and biological functions in intrahepatic cholangiocarcinoma (iCCA) remain to be established. In our study, we identified NNMT as an oncogene in iCCA and provided mechanistic insights into the roles of NNMT in iCCA progression. High NNMT expression in iCCA tissues was identified using western blotting and immunohistochemistry (IHC). We identified a significantly higher NNMT expression level in human iCCA tissues than that in adjacent normal tissues. Increased NNMT expression promoted iCCA cell proliferation and metastasis in vitro and in vivo. Mechanistically, NNMT inhibited the level of histone methylation in iCCA cells by consuming the methyl donor S-adenosyl methionine (SAM), thereby promoting the expression of epidermal growth factor receptor (EGFR). EGFR may activate the aerobic glycolysis pathway in iCCA cells by activating the STAT3 signaling pathway. In conclusion, we identified NNMT as an oncogene in iCCA and provided mechanistic insights into the roles of NNMT in iCCA progression.

6.
Cancer Sci ; 113(9): 2986-3001, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35534983

RESUMO

Emerging evidence has indicated that long noncoding RNAs (lncRNAs) are potential biomarkers and play crucial roles in cancer development. However, the functions and underlying mechanisms of lncRNA TPT1-AS1 in pancreatic ductal adenocarcinoma (PDAC) remain elusive. RNAseq data of PDAC tissues and normal tissues were analyzed, and lncRNAs which were associated with PDAC prognosis were identified. The clinical relevance of TPT1-AS1 for PDAC patients was explored, and the effects of TPT1-AS1 in PDAC progression were investigated in vitro and in vivo. LncRNA TPT1-AS1 was highly expressed in PDAC, and high TPT1-AS1 levels predicted a poor prognosis. Moreover, functional experiments revealed that TPT1-AS1 promoted pancreatic cancer cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) process in vitro and in vivo. Mechanistically, TPT1-AS1 functioned as an endogenous sponge for miR-30a-5p, which increased integrin ß3 (ITGB3) level in pancreatic cancer cells. Conversely, our data revealed that ITGB3 could activate the transcription factor signal transducer and activator of transcription 3 (STAT3), which in turn bound directly to the TPT1-AS1 promoter and affected the expression of TPT1-AS1, thus forming a positive feedback loop with TPT1-AS1. Taken together, our results uncovered a reciprocal loop of TPT1-AS1 and ITGB3 which contributed to pancreatic cancer growth and development, and indicated that TPT1-AS1 might serve as a novel potential diagnostic biomarker and therapeutic target for PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pancreáticas
7.
Exp Anim ; 71(3): 305-315, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35173110

RESUMO

Infection-associated inflammation and coagulation are critical pathologies in sepsis-induced acute lung injury (ALI). This study aimed to investigate the effects of microRNA-363-3p (miR-363-3p) on sepsis-induced ALI and explore the underlying mechanisms. A cecal ligation and puncture-induced septic mouse model was established. The results of this study suggested that miR-363-3p was highly expressed in lung tissues of septic mice. Knockdown of miR-363-3p attenuated sepsis-induced histopathological damage, the inflammation response and oxidative stress in lung tissues. Furthermore, knockdown of miR-363-3p reduced the formation of platelet-derived microparticles and thrombin generation in blood samples of septic mice. Downregulation of miR-363-3p suppressed sphingosine-1-phosphate receptor 1 (S1PR1) expression in lung tissues and subsequently inactivated the nuclear factor kappa-B ligand (NF-κB) signaling. A luciferase reporter assay confirmed that miR-363-3p directly targeted the 3'-untranslated region of the mouse S1pr1 mRNA. Collectively, our study suggests that inactivation of NF-κB signaling is involved in the miR-363-3p/S1PR1 axis-mediated protective effect on septic ALI.


Assuntos
Lesão Pulmonar Aguda , Micropartículas Derivadas de Células , MicroRNAs , Sepse , Receptores de Esfingosina-1-Fosfato , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Animais , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Ligantes , Camundongos , MicroRNAs/genética , NF-kappa B/metabolismo , Sepse/complicações , Sepse/genética , Receptores de Esfingosina-1-Fosfato/metabolismo
8.
Cell Death Dis ; 12(11): 996, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697288

RESUMO

Chronic pancreatitis (CP) is described as progressive inflammatory fibrosis of pancreas, accompanied with irreversible impaired endocrine and exocrine insufficiency. Pancreatic stellate cells (PSCs) are widely distributed in the stroma of the pancreas and PSCs activation has been shown as one of the leading causes for pancreatic fibrosis. Our previous study has revealed that autophagy is dramatically activated in CP tissues, which facilitates PSCs activation and pancreatic fibrosis. Long non-coding RNAs (LncRNAs) have been recognized as crucial regulators for fibrosis-related diseases. LncRNAs interact with RNA binding protein or construct competitive endogenous RNA (ceRNA) hypothesis which elicited the fibrotic processes. Until now, the effects of lncRNAs on PSCs activation and pancreatic fibrosis have not been clearly explored. In this study, a novel lncRNA named Lnc-PFAR was found highly expressed in mouse and human CP tissues. Our data revealed that Lnc-PFAR facilitates PSCs activation and pancreatic fibrosis via RB1CC1-induced autophagy. Lnc-PFAR reduces miR-141 expression by suppressing pre-miR-141 maturation, which eventually upregulates the RB1CC1 and fibrosis-related indicators expression. Meanwhile, Lnc-PFAR enhanced PSCs activation and pancreatic fibrosis through trigging autophagy. Our study interrogates a novel lncRNA-induced mechanism in promoting the development of pancreatic fibrosis, and Lnc-PFAR is suggested to be a prospective therapeutic target in clinical scenarios.


Assuntos
Fibrose/complicações , MicroRNAs/metabolismo , Pancreatite Crônica/genética , RNA Longo não Codificante/metabolismo , Animais , Autofagia , Estudos de Casos e Controles , Doença Crônica , Modelos Animais de Doenças , Humanos , Camundongos , Pancreatite Crônica/patologia
9.
J Inflamm Res ; 14: 4519-4536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526799

RESUMO

PURPOSE: Itaconate is well known for its strong anti-inflammatory and antioxidant effect, but little is known about the potential role of long non-coding RNAs (lncRNAs) in the underlying mechanisms of hepatic ischemia-reperfusion (IR) injury. The aim of our study is to identify lncRNAs related to IR injury and itaconate-mediated protection and to demonstrate the mechanism by which itaconate acts in liver IR injury from the new perspective of lncRNAs. METHODS: 4-Octyl itaconate (OI), a membrane-permeable derivative of itaconate, was used as a substitute for itaconate in our study. By using a mouse model of hepatic IR injury, serum and liver samples were collected to measure indexes of liver injury. Then, the liver samples of the mice were subjected to RNA sequencing (RNA-seq) and subsequent bioinformatics analysis. RESULTS: Itaconate attenuated liver IR injury. A total of 138 lncRNAs and 156 messenger RNAs (mRNAs) were markedly differentially expressed in the IR-damaged liver tissues pretreated with OI compared with the matched liver tissues treated with vehicle. Functional analysis indicated that lncRNAs may indirectly participate in the effects of itaconate. Furthermore, 41 mRNAs were examined for the protein-protein interaction (PPI) network analysis, and a key gene cluster was defined. Then, combined the coexpression analysis and the cis and trans regulatory function prediction of lncRNAs, some "candidate" lncRNA-mRNA pairs which might relate to itaconate-mediated liver protection were identified, while the relationship requires future validation. CONCLUSION: Our study revealed that itaconate could protect the liver against IR injury and that lncRNAs might play a role in this process. Our study provides a novel way to investigate the mechanism by which itaconate affects hepatic IR injury and exerts its anti-inflammatory and antioxidative stress effects.

10.
Oxid Med Cell Longev ; 2021: 6677955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104311

RESUMO

Peroxisome proliferator-activated receptors (PPARs) α and γ have been shown to be protective in hepatic ischemia/reperfusion (I/R) injury. However, the precise role of PPARγ coactivator-1α (PGC-1α), which can coactivate both of these receptors, in hepatic I/R injury, remains largely unknown. This study was designed to test our hypothesis that PGC-1α is protective during hepatic I/R injury in vitro and in vivo. Our results show that endogenous PGC-1α is basally expressed in normal livers and is moderately increased by I/R. Ectopic PGC-1α protects against hepatic I/R and hepatocyte anoxia/reoxygenation (A/R) injuries, whereas knockdown of endogenous PGC-1α aggravates such injuries, as evidenced by assessment of the levels of serum aminotransferases and inflammatory cytokines, necrosis, apoptosis, cell viability, and histological examination. The EMSA assay shows that the activation of PPARα and PPARγ is increased or decreased by the overexpression or knockdown of PGC-1α, respectively, during hepatic I/R and hepatocyte A/R injuries. In addition, the administration of specific antagonists of either PPARα (MK886) or PPARγ (GW9662) can effectively decrease the protective effect of PGC-1α against hepatic I/R and hepatocyte A/R injuries. We also demonstrate an important regulatory role of PGC-1α in reactive oxygen species (ROS) metabolism during hepatic I/R, which is correlated with the induction of ROS-detoxifying enzymes and is also dependent on the activations of PPARα and PPARγ. These data demonstrate that PGC-1α protects against hepatic I/R injury, mainly by regulating the activation of PPARα and PPARγ. Thus, PGC-1α may be a promising therapeutic target for the protection of the liver against I/R injury.


Assuntos
Hepatopatias/metabolismo , PPAR alfa/metabolismo , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Humanos , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão
11.
J Int Med Res ; 49(5): 3000605211014094, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34034547

RESUMO

BACKGROUND: Sepsis typically results in enhanced coagulation system activation and microthrombus formation. Microparticle (MP) production promotes coagulation and enhances pro-coagulation. This study investigated how circulating MP levels and tissue factor-bearing MP (TF+-MP) activity caused coagulation in patients with septic disseminated intravascular coagulation (DIC). METHODS: Thirty patients with septic DIC and 30 healthy controls were studied from December 2017 to March 2019. Patient blood samples were collected at enrolment (day 1) and on days 3 and 5; DIC scores and Sequential Organ Failure Assessment (SOFA) scores were recorded. TF+-MP activity was measured using TF-dependent factor Xa generation experiments. Circulating MP concentrations were determined by MP capture assay. Clotting factor activity, antithrombin level, soluble thrombomodulin, and serum tissue factor pathway inhibitor (TFPI) concentrations were measured. RESULTS: Patients with septic DIC had lower circulating MP levels than healthy control patients. Circulating MP levels in patients with septic DIC were positively correlated with DIC scores and negatively correlated with coagulation factors, but TF+-MP activity did not correlate with clotting factor levels and TFPI. CONCLUSIONS: In patients with septic DIC, circulating MP levels are important in promoting coagulation activation and increasing clotting factor consumption. TF+-MP activity may not be the main form of active TF.


Assuntos
Micropartículas Derivadas de Células , Coagulação Intravascular Disseminada , Sepse , Coagulação Sanguínea , Humanos , Escores de Disfunção Orgânica
13.
Free Radic Biol Med ; 163: 141-152, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276082

RESUMO

Targeting energy metabolism holds the potential to effectively treat a variety of malignant diseases, and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) is a key regulator of energy metabolism. However, PGC1α's role in cancer, especially in hepatocellular carcinoma (HCC) remains largely unknown. In the present study, we reported that PGC1α was significantly downregulated in HCC cell lines and specimens. Moreover, reduced expression of PGC1α in tumor cells was correlated with poor prognosis. PGC1α overexpression substantially inhibited cell proliferation and induced apoptosis in vitro and in vivo. On the contrary, the knockdown of PGC1α produced the opposite effect. The mechanism was at least partially due to the upregulation of mitochondrial pyruvate carrier 1 (MPC1) caused by PGC1α, which promoted mitochondrial biogenesis by binding to nuclear respiratory factor 1 (NRF1). Consequently, the production of cellular reactive oxygen species (ROS) caused by mitochondrial oxidation was elevated above a critical threshold for survival. Furthermore, we found that PGC1α could enhance the antitumor activity of sorafenib and doxorubicin in HCC through ROS accumulation-mediated cell death. These results indicate that PGC1α/NRF1-MPC1 axis is involved in HCC progression and could be a promising target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Doxorrubicina/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Proteínas de Transporte da Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sorafenibe/farmacologia
14.
Ann Palliat Med ; 10(2): 1456-1466, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33183044

RESUMO

BACKGROUND: The effects of CD44, via the anti-inflammatory functions of autophagy, on lung injuries following pulmonary contusion (PC) and cell apoptosis were investigated. METHODS: Acute lung injury (ALI) mouse models were established by inducing lung injury via PC. This injury was verified using hematoxylin and eosin (H&E) staining, following which bronchoalveolar lavage fluid (BALF) was collected from these mice for analysis and further experimentation. CD44, LC3 I/II ratio, Beclin-1, and p62 expression levels in A549 cells were determined using immunohistochemistry, and western blot assays. CCK-8, flow cytometry, and acridine orange/ethidium bromide (AO/EB) fluorescence staining were used to quantify cell growth induced by BALF. LC3 II and LC3 I expression was determined through immunofluorescence. CD44-knockdown mice were used to demonstrate lung function after PC. RESULTS: The successful establishment of the ALI mouse models, created via PC was confirmed by an enhanced inflammatory response in the lung tissue, markers of cell autophagy. The ALI mice were found to have elevated CD44 expression. The viability of A549 cells exposed to BALF was downregulated, while the knockdown of CD44 promoted this effect. AO/EB and flow cytometry also indicated that the knockdown of CD44 promoted the cell apoptosis induced by BALF. Western blot analysis showed that knockdown of CD44 can inhibit LC3 I/II, p62, and Beclin-1 expression induced by BALF exposure. Additionally, knockdown of CD44 in mice was found to promote PC-induced lung injury through the attenuation of autophagy. CONCLUSIONS: Knockdown CD44 was shown to inhibit cell growth and induced cell apoptosis via autophagy signaling pathways, promote mice with ALI induced by PC in vivo and in vitro.


Assuntos
Lesão Pulmonar Aguda , Contusões , Lesão Pulmonar Aguda/genética , Animais , Apoptose , Autofagia , Camundongos , Transdução de Sinais
15.
Aging (Albany NY) ; 13(2): 1962-1971, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33260149

RESUMO

Current evidence is inconsistent regarding the impact of metabolic syndrome (MetS) on sex hormones and reproductive function, and this meta-analysis aimed to illuminate the association. A literature search was conducted in public databases to identify all relevant studies, and study-specific standardized mean differences (SMD) and 95% confidence intervals (CI) were pooled using a random-effects model. Finally, 21 studies were identified with a total of 2923 MetS cases and 14062 controls. In males, MetS cases had a lower level of testosterone, inhibin B, total sperm count, sperm concentration, sperm normal morphology, sperm total motility, sperm progressive motility and sperm vitality, and a higher level of DNA fragmentation and mitochondrial membrane potential. In females, MetS cases had a higher level of testosterone. No significant difference was detected for follicle-stimulating hormone, luteinizing hormone, oestradiol, prolactin, anti-Müllerian hormone and semen volume in males, and for oestradiol, follicle-stimulating hormone, luteinizing hormone and progesterone in females. In conclusion, this meta-analysis indicated the impact of MetS on sex hormones and reproductive function, and MetS cases had a potential risk of infertility.


Assuntos
Fertilidade , Hormônios Esteroides Gonadais/metabolismo , Infertilidade/metabolismo , Síndrome Metabólica/metabolismo , Hormônio Antimülleriano/metabolismo , Estudos de Casos e Controles , Fragmentação do DNA , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante , Humanos , Infertilidade/complicações , Inibinas/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Potencial da Membrana Mitocondrial , Síndrome Metabólica/complicações , Progesterona/metabolismo , Prolactina/metabolismo , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides/patologia , Testosterona/metabolismo , Tireotropina/metabolismo
16.
J Exp Clin Cancer Res ; 39(1): 90, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430024

RESUMO

BACKGROUND: ATP binding cassette subfamily A member 8 (ABCA8) belongs to the ATP binding cassette (ABC) transporter superfamily. ABCA8 is a transmembrane transporter responsible for the transport of organics, such as cholesterol, and drug efflux. Some members of the ABC subfamily, such as ABCA1, may inhibit cancer development. However, the mechanism of ABCA8 in the process of cancer activation is still ambiguous. METHODS: The expression of ABCA8 in human hepatocellular carcinoma (HCC) tissues and cell lines was examined using qPCR, immunoblotting, and immunohistochemical staining. The effects of ABCA8 on the proliferation and metastasis of HCC were examined using in vitro and in vivo functional tests. A luciferase reporter assay was performed to explore the binding between microRNA-374b-5p (miR-374b-5p) and the ABCA8 3'-untranslated region (UTR). RESULTS: ABCA8 was frequently down-regulated in HCC and this down-regulation was negatively correlated with prognosis. The overexpression of ABCA8 inhibited growth and metastasis in HCC, whereas the knockdown of ABCA8 exerted the antithetical effects both in vivo and in vitro. ABCA8 was down-regulated by miR-374b-5p; this down-regulation can induce epithelial transformation to mesenchyme via the ERK/ZEB1 signaling pathway and promote HCC progression. CONCLUSION: We exposed the prognostic value of ABCA8 in HCC, and illuminated a novel pathway in ABCA8-regulated inhibition of HCC tumorigenesis and metastasis. These findings may lead to a new targeted therapy for HCC through the regulation of ABCA8, and miR-374b-5p.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Xenoenxertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Metástase Neoplásica , Transfecção
17.
Aging (Albany NY) ; 11(14): 5035-5057, 2019 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-31327760

RESUMO

Despite improvements in surgical procedures and comprehensive therapies, pancreatic cancer remains one of the most aggressive and deadly human malignancies. It is therefore necessary to determine which cellular mediators associate with prognosis in pancreatic cancer so as to improve the treatment of this disease. In the present study, mRNA array and immunohistochemical analyses showed that KLF5 is highly expressed in tissue samples from three short-surviving patients with pancreatic cancer. Survival analysis using data from The Cancer Genome Atlas showed that patients highly expressing KLF5 exhibited shorter overall and tumor-free survival times. Mechanistically, KLF5 promoted expression of E2F1, cyclin D1 and Rad51, while inhibiting expression of p16 in pancreatic cancer cells. Finally, flow cytometric analyses verified that KLF5 promotes G1/S progression of the cell cycle in pancreatic cancer cells. Collectively, these findings demonstrate that KLF5 is an important prognostic biomarker in pancreatic cancer patients, and they shed light on the molecular mechanism by which KLF5 stimulates cell cycle progression in pancreatic cancer.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Idoso , Idoso de 80 Anos ou mais , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fator de Transcrição E2F1/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Rad51 Recombinase/genética , Análise de Sobrevida , Transcriptoma
18.
J Exp Clin Cancer Res ; 38(1): 297, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288830

RESUMO

BACKGROUND: Ubiquitin-like protein 4A (UBL4A) plays a significant role in protein metabolism and the maintenance of cellular homeostasis. In cancer, UBL4A represses tumorigenesis and is involved in various signaling pathways. Pancreatic ductal adenocarcinoma (PDAC) is still a major cause of cancer-related death and the underlying molecular mechanism of UBL4A and PDAC remains unknown. METHODS: First, the prognostic role of UBL4A and its expression in human PDAC patients and in pancreatic cancer cell lines were detected by survival analysis and qRT-PCR, western blotting, and immunohistochemistry. Next, the effects of UBL4A on proliferation and metastasis in pancreatic cancer were evaluated by functional assays in vitro and in vivo. In addition, chloroquine was introduced to determine the role of autophagy in UBL4A-related tumor proliferation and metastasis. Ultimately, coimmunoprecipitation was used to confirm the interaction between UBL4A and lysosome associated membrane protein-1 (LAMP1), and western blotting was performed to explore the UBL4A mechanism. RESULTS: We found that UBL4A was decreased in PDAC and that high levels of UBL4A correlated with a favorable prognosis. We observed that UBL4A inhibited tumor proliferation and metastasis through suppression of autophagy, a critical intracellular catabolic process that reportedly protects cells from nutrient starvation and other stress conditions. UBL4A caused impaired autophagic degradation in vitro, a crucial process in autophagy, by disturbing the function of lysosomes and contributing to autophagosome accumulation. We found a positive correlation between UBL4A and LAMP1. Furthermore, UBL4A caused lysosomal dysfunction by directly interacting with LAMP1, and LAMP1 overexpression reversed the antitumor effects of UBL4A in pancreatic cancer. In addition, we demonstrated that UBL4A suppressed tumor growth and metastasis in a pancreatic orthotopic tumor model. CONCLUSIONS: These findings suggest that UBL4A exerts an antitumor effect on autophagy-related proliferation and metastasis in PDAC by directly targeting LAMP1. Herein, we describe a novel mechanism of UBL4A that suppresses the progression of pancreatic cancer. UBL4A might be a promising target for the treatment and prognostication of PDAC.


Assuntos
Autofagia , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Neoplasias Pancreáticas/metabolismo , Ubiquitinas/metabolismo , Adulto , Idoso , Animais , Apoptose , Autofagia/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Xenoenxertos , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Ligação Proteica , Ubiquitinas/genética , Neoplasias Pancreáticas
19.
EBioMedicine ; 44: 237-249, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31176678

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly fatal malignant cancer worldwide. Elucidating the underlying molecular mechanism of HCC progression is critical for the identification of new therapeutic targets for HCC. This study aimed to determine the role of Non-SMC condensin II complex subunit G2 (NCAPG2) in HCC proliferation and metastasis. METHODS: We detected NCAPG2 expression in tissues using immunohistochemistry, western blotting and real-time PCR. The effects of NCAPG2 on cell proliferation and metastasis were evaluated both in vitro and in vivo. Immunocytochemistry, enzyme linked immunosorbent assay, co-immunoprecipitation and luciferase reporter assay were performed to uncover the underlying mechanisms. FINDINGS: We found that NCAPG2 is frequently upregulated in HCC tumour tissues and predicts a poor prognosis. NCAPG2 overexpression promotes HCC proliferation, migration, and invasion through activating STAT3 and NF-κB signalling pathways. Moreover, NCAPG2 is a direct target of miR-188-3p. We demonstrated the existence of a positive feedback loop between NCAPG2 and p-STAT3 and a negative feedback loop between NCAPG2 and miR-188-3p. INTERPRETATION: Our study indicates that NCAPG2 overexpression could drive HCC proliferation and metastasis through activation of the STAT3 and NF-κB/miR-188-3p pathways. These findings may contribute to the identification of novel biomarkers and therapeutic targets for HCC. FUND: National Key Program for Science and Technology Research and Development (Grant No. 2016YFC0905902); the National Natural Scientific Foundation of China (Nos. 81772588, 81602058, 81773194); University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (Grant No. UNPYSCT-2016200); the Innovative Research Program for Graduate of Harbin Medical University (Grant Nos. YJSCX2017-38HYD, YJSCX2016-18HYD).


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Cromossômicas não Histona/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Sítios de Ligação , Biomarcadores Tumorais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas Cromossômicas não Histona/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Modelos Biológicos , Metástase Neoplásica , Dinâmica Populacional , Prognóstico , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Clin Cancer Res ; 25(17): 5407-5421, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175094

RESUMO

PURPOSE: As a main rate-limiting subunit of the 2-oxoglutarate dehydrogenase multienzyme complex, oxoglutarate dehydrogenase like (OGDHL) is involved in the tricarboxylic acid cycle, and frequently downregulated in human carcinoma and suppresses tumor growth. However, little is known about the role of OGDHL in human cancer, especially pancreatic cancer. Our goal is to study the underlying mechanism and define a novel signaling pathway controlled by OGDHL modulating pancreatic cancer progression. EXPERIMENTAL DESIGN: The expression and functional analysis of OGDHL, miR-214, and TWIST1 in human pancreatic cancer tissues, cell lines, and xenograft tumor model were investigated. The correlations between OGDHL and those markers were analyzed. RESULTS: OGDHL was downregulated in human pancreatic cancer and predicted poor prognosis. OGDHL overexpression inhibited migration and invasion of pancreatic cancer cells and suppressed pancreatic cancer tumor growth. OGDHL was shown to be negatively regulated by miR-214. TWIST1 upregulation induced miR-214 expression in pancreatic cancer. OGDHL suppressed TWIST1 expression through promoting ubiquitin-mediated proteasomal degradation of HIF1α and regulating AKT pathways. A combination of OGDHL downregulation and TWIST1 and miR-214 overexpression predicted worse prognosis in patients with pancreatic cancer. CONCLUSIONS: We demonstrated the prognostic value of OGDHL, miR-214, and TWIST1 in pancreatic cancer, and elucidated a novel pathway in OGDHL-regulated inhibition of pancreatic cancer tumorigenesis and metastasis. These findings may lead to new targeted therapy for pancreatic cancer through regulating OGDHL, miR-214, and TWIST1.


Assuntos
Complexo Cetoglutarato Desidrogenase/metabolismo , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Complexo Cetoglutarato Desidrogenase/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Metástase Neoplásica , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Prognóstico , Transdução de Sinais , Proteína 1 Relacionada a Twist/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...